Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Intern Med ; 107: 52-59, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36344354

RESUMEN

INTRODUCTION: In Non-Alcoholic Fatty Liver Disease (NAFLD), events driving early hepatic dysfunction with respect to specific metabolic pathways are still poorly known. METHODS: We enrolled 84 subjects with obesity and/or type 2 diabetes (T2D). FibroScan® served to assess NAFLD by controlled attenuation parameter (CAP), and fibrosis by liver stiffness (LS). Patients with LS above 7 kPa were excluded. APRI and FIB-4 were used as additional serum biomarkers of fibrosis. The stable-isotope dynamic breath test was used to assess the hepatic efficiency of portal extraction (as DOB15) and microsomal metabolization (as cPDR30) of orally-administered (13C)-methacetin. RESULTS: NAFLD occurred in 45%, 65.9%, and 91.3% of normal weight, overweight, and obese subjects, respectively. Biomarkers of liver fibrosis were comparable across subgroups, and LS was higher in obese, than in normal weight subjects. DOB15 was 23.2 ± 1.5‰ in normal weight subjects, tended to decrease in overweight (19.9 ± 1.0‰) and decreased significantly in obese subjects (16.9 ± 1.3, P = 0.008 vs. normal weight). Subjects with NAFLD had lower DOB15 (18.7 ± 0.9 vs. 22.1 ± 1.2, P = 0.03) but higher LS (4.7 ± 0.1 vs. 4.0 ± 0.2 kPa, P = 0.0003) than subjects without NAFLD, irrespective of fibrosis. DOB15 (but not cPDR30) decreased with increasing degree of NAFLD (R = -0.26; P = 0.01) and LS (R = -0.23, P = 0.03). Patients with T2D showed increased rate of NAFLD than those without T2D but similar LS, DOB15 and cPDR30. CONCLUSIONS: Overweight, obesity and liver fat accumulation manifest with deranged portal extraction efficiency of methacetin into the steatotic hepatocyte. This functional alteration occurs early, and irrespective of significant fibrosis and presence of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Sobrepeso/complicaciones , Sobrepeso/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Hígado/patología , Cirrosis Hepática , Obesidad/complicaciones , Obesidad/epidemiología , Biomarcadores
2.
Nutrients ; 15(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615664

RESUMEN

Coffee may protect against non-alcoholic fatty liver disease (NAFLD), but the roles of the caffeine and non-caffeine components are unclear. Coffee intake by 156 overweight subjects (87% with Type-2-Diabetes, T2D) was assessed via a questionnaire, with 98 subjects (all T2D) also providing a 24 h urine sample for quantification of coffee metabolites by LC-MS/MS. NAFLD was characterized by the fatty liver index (FLI) and by Fibroscan® assessment of fibrosis. No associations were found between self-reported coffee intake and NAFLD parameters; however, total urine caffeine metabolites, defined as Σcaffeine (caffeine + paraxanthine + theophylline), and adjusted for fat-free body mass, were significantly higher for subjects with no liver fibrosis than for those with fibrosis. Total non-caffeine metabolites, defined as Σncm (trigonelline + caffeic acid + p-coumaric acid), showed a significant negative association with the FLI. Multiple regression analyses for overweight/obese T2D subjects (n = 89) showed that both Σcaffeine and Σncm were negatively associated with the FLI, after adjusting for age, sex, HbA1c, ethanol intake and glomerular filtration rate. The theophylline fraction of Σcaffeine was significantly increased with both fibrosis and the FLI, possibly reflecting elevated CYP2E1 activity-a hallmark of NAFLD worsening. Thus, for overweight/obese T2D patients, higher intake of both caffeine and non-caffeine coffee components is associated with less severe NAFLD. Caffeine metabolites represent novel markers of NAFLD progression.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Café , Cafeína , Diabetes Mellitus Tipo 2/complicaciones , Teofilina , Cromatografía Liquida , Sobrepeso/complicaciones , Espectrometría de Masas en Tándem , Cirrosis Hepática/complicaciones , Encuestas y Cuestionarios , Obesidad/complicaciones
3.
J Pathol ; 255(4): 346-361, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34396529

RESUMEN

Insulin-degrading enzyme (IDE) function goes far beyond its known proteolytic role as a regulator of insulin levels. IDE has a wide substrate promiscuity, degrading several proteins such as amyloid-ß peptide, glucagon, islet amyloid polypeptide (IAPP), and insulin-like growth factors, which have diverse physiological and pathophysiological functions. Importantly, IDE plays other non-proteolytic functions such as: a chaperone/dead-end chaperone, an E1-ubiquitin activating enzyme, and a proteasome modulator. It also responds as a heat shock protein, regulating cellular proteostasis. Notably, amyloidogenic proteins such as IAPP, amyloid-ß, and α-synuclein have been reported as substrates for IDE chaperone activity. This is of utmost importance as failure of IDE may result in increased protein aggregation, a key hallmark in the pathogenesis of beta cells in type 2 diabetes mellitus and of neurons in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. In this review, we focus on the biochemical and biophysical properties of IDE and the regulation of its physiological functions. We further raise the hypothesis that IDE plays a central role in the pathological context of dysmetabolic and neurodegenerative diseases and discuss its potential as a therapeutic target. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Insulisina/metabolismo , Enfermedades Metabólicas/enzimología , Enfermedades Neurodegenerativas/enzimología , Animales , Humanos
4.
Metabolism ; 118: 154735, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33631143

RESUMEN

Systemic insulin availability is determined by a balance between beta-cell secretion capacity and insulin clearance (IC). Insulin-degrading enzyme (IDE) is involved in the intracellular mechanisms underlying IC. The liver is a major player in IC control yet the role of hepatic IDE in glucose and lipid homeostasis remains unexplored. We hypothesized that IDE governs postprandial IC and hepatic IDE dysfunction amplifies dysmetabolic responses and prediabetes traits such as hepatic steatosis. In a European/Portuguese population-based cohort, IDE SNPs were strongly associated with postprandial IC in normoglycemic men but to a considerably lesser extent in women or in subjects with prediabetes. Liver-specific knockout-mice (LS-IDE KO) under normal chow diet (NCD), showed reduced postprandial IC with glucose intolerance and under high fat diet (HFD) were more susceptible to hepatic steatosis than control mice. This suggests that regulation of IC by IDE contributes to liver metabolic resilience. In agreement, LS-IDE KO hepatocytes revealed reduction of Glut2 expression levels with consequent impairment of glucose uptake and upregulation of CD36, a major hepatic free fatty acid transporter. Together these findings provide strong evidence that dysfunctional IC due to abnormal IDE regulation directly impairs postprandial hepatic glucose disposal and increases susceptibility to dysmetabolic conditions in the setting of Western diet/lifestyle.


Asunto(s)
Insulina/metabolismo , Insulisina/metabolismo , Periodo Posprandial , Animales , Glucemia/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Insulisina/genética , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Ratones Noqueados , Polimorfismo de Nucleótido Simple
5.
Nanomaterials (Basel) ; 10(10)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066658

RESUMEN

Due to its properties, paper represents an alternative to perform point-of-care tests for colorimetric determination of glucose levels, providing simple, rapid, and inexpensive means of diagnosis. In this work, we report the development of a novel, rapid, disposable, inexpensive, enzyme-free, and colorimetric paper-based assay for glucose level determination. This sensing strategy is based on the synthesis of gold nanoparticles (AuNPs) by reduction of a gold salt precursor, in which glucose acts simultaneously as reducing and capping agent. This leads to a direct measurement of glucose without any enzymes or depending on the detection of intermediate products as in conventional enzymatic colorimetric methods. Firstly, we modelled the synthesis reaction of AuNPs to determine the optical, morphological, and kinetic properties and their manipulation for glucose sensing, by determining the influence of each of the reaction precursors towards the produced AuNPs, providing a guide for the manipulation of nucleation and growth. The adaptation of this synthesis into the developed paper platform was tested and calibrated using different standard solutions with physiological concentrations of glucose. The response of the colorimetric signals obtained with this paper-based platform showed a linear behavior until 20 mM, required for glycemic control in diabetes, using the Red × Value/Grey feature combination as a calibration metric, to describe the variations in color intensity and hue in the spot test zone. The colorimetric sensor revealed a detection limit of 0.65 mM, depending on calibration metric and sensitivity of 0.013 AU/mM for a linear sensitivity range from 1.25 to 20 mM, with high specificity for the determination of glucose in complex standards with other common reducing interferents and human serum.

6.
Antioxidants (Basel) ; 9(9)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942712

RESUMEN

The liver is a fundamental organ to ensure whole-body homeostasis, allowing for a proper increase in insulin sensitivity from the fast to the postprandial status. Hepatic regulation of glucose metabolism is crucial and has been shown to be modulated by glutathione (GSH) and nitric oxide (NO). However, knowledge of the metabolic action of GSH and NO in glucose homeostasis remains incomplete. The current study was designed to test the hypothesis that treatment with S-nitrosoglutathione is sufficient to revert insulin resistance induced by a high-sucrose diet. Male Wistar rats were divided in a control or high-sucrose group. Insulin sensitivity was determined: (i) in the fast state; (ii) after a standardized test meal; (iii) after GSH + NO; and after (iv) S-nitrosoglutathione (GSNO) administration. The fasting glucose level was not different between the control and high-sucrose group. In the liver, the high-sucrose model shows increased NO and unchanged GSH levels. In control animals, insulin sensitivity increased after a meal or administration of GSH+NO/GSNO, but this was abrogated by sucrose feeding. GSNO was able to revert insulin resistance induced by sucrose feeding, in a dose-dependent manner, suggesting that they have an insulin-sensitizing effect in vivo. These effects are associated with an increased insulin receptor and Akt phosphorylation in muscle cells. Our findings demonstrate that GSNO promotes insulin sensitivity in a sucrose-induced insulin-resistant animal model and further implicates that this antioxidant molecule may act as a potential pharmacological tool for the treatment of insulin resistance in obesity and type 2 diabetes.

7.
Eur J Prev Cardiol ; 27(15): 1639-1646, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32019371

RESUMEN

AIMS: Familial hypercholesterolemia (FH) is the most common genetic disorder of lipid metabolism. The gold standard for FH diagnosis is genetic testing, available, however, only in selected university hospitals. Clinical scores - for example, the Dutch Lipid Score - are often employed as alternative, more accessible, albeit less accurate FH diagnostic tools. The aim of this study is to obtain a more reliable approach to FH diagnosis by a "virtual" genetic test using machine-learning approaches. METHODS AND RESULTS: We used three machine-learning algorithms (a classification tree (CT), a gradient boosting machine (GBM), a neural network (NN)) to predict the presence of FH-causative genetic mutations in two independent FH cohorts: the FH Gothenburg cohort (split into training data (N = 174) and internal test (N = 74)) and the FH-CEGP Milan cohort (external test, N = 364). By evaluating their area under the receiver operating characteristic (AUROC) curves, we found that the three machine-learning algorithms performed better (AUROC 0.79 (CT), 0.83 (GBM), and 0.83 (NN) on the Gothenburg cohort, and 0.70 (CT), 0.78 (GBM), and 0.76 (NN) on the Milan cohort) than the clinical Dutch Lipid Score (AUROC 0.68 and 0.64 on the Gothenburg and Milan cohorts, respectively) in predicting carriers of FH-causative mutations. CONCLUSION: In the diagnosis of FH-causative genetic mutations, all three machine-learning approaches we have tested outperform the Dutch Lipid Score, which is the clinical standard. We expect these machine-learning algorithms to provide the tools to implement a virtual genetic test of FH. These tools might prove particularly important for lipid clinics without access to genetic testing.


Asunto(s)
ADN/genética , Pruebas Genéticas/métodos , Hiperlipoproteinemia Tipo II/diagnóstico , Lípidos/genética , Aprendizaje Automático , Mutación , Realidad Virtual , Análisis Mutacional de ADN , Femenino , Heterocigoto , Humanos , Hiperlipoproteinemia Tipo II/genética , Lípidos/sangre , Masculino , Curva ROC , Factores de Riesgo
8.
Pharmaceuticals (Basel) ; 12(2)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234364

RESUMEN

With the lack of available drugs able to prevent the progression of Alzheimer's disease (AD), the discovery of new neuroprotective treatments able to rescue neurons from cell injury is presently a matter of extreme importance and urgency. Here, we were inspired by the widely reported potential of natural flavonoids to build a library of novel flavones, chromen-4-ones and their C-glucosyl derivatives, and to explore their ability as neuroprotective agents with suitable pharmacokinetic profiles. All compounds were firstly evaluated in a parallel artificial membrane permeability assay (PAMPA) to assess their effective permeability across biological membranes, namely the blood-brain barrier (BBB). With this test, we aimed not only at assessing if our candidates would be well-distributed, but also at rationalizing the influence of the sugar moiety on the physicochemical properties. To complement our analysis, logD7.4 was determined. From all screened compounds, the p-morpholinyl flavones stood out for their ability to fully rescue SH-SY5Y human neuroblastoma cells against both H2O2- and Aß1-42-induced cell death. Cholinesterase inhibition was also evaluated, and modest inhibitory activities were found. This work highlights the potential of C-glucosylflavones as neuroprotective agents, and presents the p-morpholinyl C-glucosylflavone 37, which did not show any cytotoxicity towards HepG2 and Caco-2 cells at 100 µM, as a new lead structure for further development against AD.

9.
Data Brief ; 25: 104023, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31198829

RESUMEN

Insulin-degrading enzyme (IDE) degrades and inactivates bioactive peptides such as insulin. As insulin is a master regulator of glucose homeostasis, lack of IDE is expected to have a profound impact on both insulin and glucose levels. This article shares data on glucose and insulin homeostasis of control, heterozygous and knockout mice for Ide after 18 weeks of a normal chow diet. This data article is related to a research article entitled "Knockout of insulin-degrading enzyme leads to mice testicular morphological changes and impaired sperm quality" (Meneses et al., 2019).

10.
Mol Cell Endocrinol ; 486: 11-17, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30807788

RESUMEN

Insulin-degrading enzyme (IDE) is a zinc metalloprotease responsible for degrading and inactivating several bioactive peptides, including insulin. Individuals without this enzyme or with a loss-of-function mutation in the gene that codifies it, present hyperinsulinemia. In addition, impairment of IDE-mediated insulin clearance is associated with the development of metabolic diseases, namely prediabetes. Although insulin regulates male fertility, the role of IDE on male reproductive function remains unknown. We proposed to study the influence of IDE in the reproductive potential of males. As insulin mediates key events for the normal occurrence of spermatogenesis, we hypothesized that IDE functioning might be linked with sperm quality. We used C57BL/6N mice that were divided in three groups according to its genotype: wild type (WT), heterozygous and knockout (KO) male mice for Ide. Spermatozoa were collected from the cauda of epididymis and sperm parameters were evaluated. Testicular tissue morphology was assessed through hematoxylin and eosin stain. Mitochondrial complex protein levels and lipid peroxidation were also evaluated in the testicular tissue. Our results show that KO mice present a 50% decrease in testes weight compared to WT mice as well as a decrease in seminiferous tubules diameter. Moreover, KO mice present impaired sperm quality, namely a decrease in both sperm viability and morphology. These results provide evidence that IDE plays an important role in determining the reproductive potential of males.


Asunto(s)
Insulisina/deficiencia , Espermatozoides/patología , Testículo/patología , Animales , Apoptosis , Biomarcadores/metabolismo , Insulisina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo
11.
Metabolism ; 65(10): 1508-21, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27621186

RESUMEN

Methylsulfonylmethane (MSM), an organosulfur compound, has been used as a dietary supplement that can improve various metabolic diseases. However, the effect of MSM on obesity-linked metabolic disorders remains unclear. The goal of the current study is to determine whether MSM has beneficial effects on glucose and lipid homeostasis in obesity-associated pathophysiologic states. High-fat diet-induced obese (DIO) and genetically obese diabetic db/db mice treated with MSM (1%-5% v/v, by drinking water) were studied. Metabolic parameters involved in glucose and lipid metabolism were determined. Treatment of DIO mice with MSM leads to a significant decrease in blood glucose levels. DIO mice treated with MSM are hypersensitive to insulin, as evidenced by decreased serum insulin and an increase in the area above the curve during an ITT. Concurrently, MSM reduces hepatic triglyceride and cholesterol contents in DIO mice. These effects are accompanied by reductions in gene expression of key molecules involved in lipogenesis and inflammation. FACS analysis reveals that MSM markedly increases the frequency of B cells and decreases the frequency of myeloid cells in peripheral blood and in bone marrow. Moreover, overnutrition-induced changes of femur microarchitecture are restored by MSM. In db/db mice, a marked impairment in glucose and lipid metabolic profiles is notably ameliorated when MSM is supplemented. These data suggest that MSM has beneficial effects on multiple metabolic dysfunctions, including hyperglycemia, hyperinsulinemia, insulin resistance, and inflammation. Thus, MSM could be the therapeutic option for the treatment of obesity-related metabolic disorders such as type 2 diabetes and fatty liver diseases.


Asunto(s)
Fármacos Antiobesidad/uso terapéutico , Dimetilsulfóxido/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/etiología , Obesidad/complicaciones , Sulfonas/uso terapéutico , Células 3T3-L1 , Animales , Linfocitos B/efectos de los fármacos , Glucemia/metabolismo , Colesterol/metabolismo , Dieta Alta en Grasa , Fémur/patología , Expresión Génica/efectos de los fármacos , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Células Mieloides/efectos de los fármacos , Obesidad/genética , Obesidad/patología , Triglicéridos/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-27107853

RESUMEN

A liquid chromatography tandem mass spectrometry (LC-MS/MS) using multiple reaction monitoring (MRM) in a triple-quadrupole scan mode was developed and comprehensively validated for the determination of [6,6-(2)H2]glucose and [U-(13)C6]glucose enrichments from dried blood spots (DBS) without prior derivatization. The method is demonstrated with dried blood spots obtained from rats administered with a primed-constant infusion of [U-(13)C6]glucose and an oral glucose load enriched with [6,6-(2)H2]glucose. The sensitivity is sufficient for analysis of the equivalent to <5µL of blood and the overall method was accurate and precise for the determination of DBS isotopic enrichments.


Asunto(s)
Glucemia/análisis , Cromatografía Liquida/métodos , Pruebas con Sangre Seca/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Isótopos de Carbono/administración & dosificación , Isótopos de Carbono/farmacocinética , Glucosa/administración & dosificación , Glucosa/farmacocinética , Límite de Detección , Modelos Lineales , Ratas , Reproducibilidad de los Resultados
13.
ACS Chem Neurosci ; 7(2): 131-42, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26667832

RESUMEN

Diabetes mellitus is the most common metabolic disease, and its prevalence is increasing. A growing body of evidence, both in animal models and epidemiological studies, has demonstrated that metabolic diseases like obesity, insulin resistance, and diabetes are associated with alterations in the central nervous system (CNS), being linked with development of cognitive and memory impairments and presenting a higher risk for dementia and Alzheimer's disease. The rising prevalence of diabetes together with its increasing earlier onset suggests that diabetes-related cognitive dysfunction will increase in the near future, causing substantial socioeconomic impact. Decreased insulin secretion or action, dysregulation of glucose homeostasis, impairment in the hypothalamic-pituitary-adrenal axis, obesity, hyperleptinemia, and inflammation may act independently or synergistically to disrupt neuronal homeostasis and cause diabetes-associated cognitive decline. However, the crosstalk between those factors and the mechanisms underlying the diabetes-related CNS complications is still elusive. During the past few years, different strategies (neuroprotective and antioxidant drugs) have emerged as promising therapies for this complication, which still remains to be preventable or treatable. This Review summarizes fundamental past and ongoing research on diabetes-associated cognitive decline, highlighting potential contributors, mechanistic mediators, and new pharmacological approaches to prevent and/or delay this complication.


Asunto(s)
Encéfalo , Trastornos del Conocimiento/etiología , Complicaciones de la Diabetes/fisiopatología , Diabetes Mellitus/patología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Complicaciones de la Diabetes/patología , Humanos
14.
Br J Pharmacol ; 173(2): 267-78, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26447327

RESUMEN

BACKGROUND AND PURPOSE: Thiazolidinediones (TZD) are known to ameliorate fatty liver in type 2 diabetes. To date, the underlying mechanisms of their hepatic actions remain unclear. EXPERIMENTAL APPROACH: Hepatic triglyceride content and export rates were assessed in 2 week high-sucrose-fed Wistar rats treated with troglitazone and compared with untreated high-sucrose rodent controls. Fractional de novo lipogenesis (DNL) contributions to hepatic triglyceride were quantified by analysis of triglyceride enrichment from deuterated water. Hepatic insulin clearance and NO status during a meal tolerance test were also evaluated. KEY RESULTS: TZD significantly reduced hepatic triglyceride (P < 0.01) by 48%, decreased DNL contribution to hepatic triglyceride (P < 0.01) and increased postprandial non-esterified fatty acids clearance rates (P < 0.01) in comparison with the high-sucrose rodent control group. During a meal tolerance test, plasma insulin AUC was significantly lower (P < 0.01), while blood glucose and plasma C-peptide levels were not different. Insulin clearance was increased (P < 0.001) by 24% and was associated with a 22% augmentation of hepatic insulin-degrading enzyme activity (P < 0.05). Finally, hepatic NO was decreased by 24% (P < 0.05). CONCLUSIONS: Overall, TZD show direct actions on liver by reducing hepatic DNL and increasing hepatic insulin clearance. The alterations in hepatic insulin clearance were associated with changes in insulin-degrading enzyme activity, with possible modulation of NO levels.


Asunto(s)
Cromanos/uso terapéutico , Hígado Graso/inducido químicamente , Hígado Graso/prevención & control , Hiperinsulinismo/inducido químicamente , Hiperinsulinismo/prevención & control , Sacarosa/toxicidad , Tiazolidinedionas/uso terapéutico , Animales , Hígado Graso/sangre , Hiperinsulinismo/sangre , Hipoglucemiantes/uso terapéutico , Masculino , Sustancias Protectoras/uso terapéutico , Ratas , Ratas Wistar , Sacarosa/administración & dosificación , Troglitazona
15.
J Nutr Biochem ; 27: 70-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26410344

RESUMEN

Insulin sensitivity (IS) increases following a meal. Meal composition affects postprandial glucose disposal but still remains unclear which nutrients and mechanisms are involved. We hypothesized that gut-absorbed glucose and amino acids stimulate hepatic parasympathetic nerves, potentiating insulin action. Male Sprague-Dawley rats were 24 h fasted and anesthetized. Two series of experiments were performed. (A) IS was assessed before and after liquid test meal administration (10 ml.kg(-1), intraenteric): glucose + amino acids + lipids (GAL, n=6); glucose (n=5); amino acids (n=5); lipids (n=3); glucose + amino acids (GA, n=9); amino acids + lipids (n=3); and glucose + lipids (n=4). (B) Separately, fasted animals were submitted to hepatic parasympathetic denervation (DEN); IS was assessed before and after GAL (n=4) or GA administration (n=4). (A) Both GAL and GA induced significant insulin sensitization. GAL increased IS from 97.9±6.2 mg glucose/kg bw (fasting) to 225.4±18.3 mg glucose/kg bw (P<0.001; 143.6±26.0% potentiation of IS); GA increased IS from 109.0±6.6 to 240.4±18.0 mg glucose/kg bw (P<0.001; 123.1±13.4% potentiation). None of the other meals potentiated IS. (B) GAL and GA did not induce a significant insulin sensitization in DEN animal. To achieve maximal insulin sensitization following a meal, it is required that gut-absorbed glucose and amino acids trigger a vagal reflex that involves hepatic parasympathetic nerves.


Asunto(s)
Aminoácidos/administración & dosificación , Alimentos , Glucosa/administración & dosificación , Resistencia a la Insulina/fisiología , Insulina/fisiología , Hígado/efectos de los fármacos , Parasimpaticomiméticos/administración & dosificación , Periodo Posprandial , Animales , Glucemia/metabolismo , Incretinas/sangre , Insulina/sangre , Hígado/fisiología , Ratas , Ratas Sprague-Dawley
16.
Biomed Res Int ; 2015: 984578, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26090470

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most prevalent cause of liver disease worldwide and afflicts adults and children as currently associated with obesity and insulin resistance. Even though lately some advances have been made to elucidate the mechanism and causes of the disease much remains unknown about NAFLD. The aim of this paper is to discuss the present knowledge regarding the pathogenesis of the disease aiming at the initial steps of NAFLD development, when inflammation impinges on fat liver deposition. At this stage, the Kupffer cells attain a prominent role. This knowledge becomes subsequently relevant for the development of future diagnostic, prevention, and therapeutic options for the management of NAFLD.


Asunto(s)
Inflamación/fisiopatología , Macrófagos del Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Obesidad/fisiopatología , Humanos , Inflamación/metabolismo , Resistencia a la Insulina , Macrófagos del Hígado/patología , Hígado/metabolismo , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Factores de Riesgo
17.
PLoS One ; 10(5): e0127221, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25961284

RESUMEN

Glucagon levels are often moderately elevated in diabetes. It is known that glucagon leads to a decrease in hepatic glutathione (GSH) synthesis that in turn is associated with decreased postprandial insulin sensitivity. Given that cAMP pathway controls GSH levels we tested whether insulin sensitivity decreases after intraportal (ipv) administration of a cAMP analog (DBcAMP), and investigated whether glucagon promotes insulin resistance through decreasing hepatic GSH levels.Insulin sensitivity was determined in fed male Sprague-Dawley rats using a modified euglycemic hyperinsulinemic clamp in the postprandial state upon ipv administration of DBcAMP as well as glucagon infusion. Glucagon effects on insulin sensitivity was assessed in the presence or absence of postprandial insulin sensitivity inhibition by administration of L-NMMA. Hepatic GSH and NO content and plasma levels of NO were measured after acute ipv glucagon infusion. Insulin sensitivity was assessed in the fed state and after ipv glucagon infusion in the presence of GSH-E. We founf that DBcAMP and glucagon produce a decrease of insulin sensitivity, in a dose-dependent manner. Glucagon-induced decrease of postprandial insulin sensitivity correlated with decreased hepatic GSH content and was restored by administration of GSH-E. Furthermore, inhibition of postprandial decrease of insulin sensitivity L-NMMA was not overcome by glucagon, but glucagon did not affect hepatic and plasma levels of NO. These results show that glucagon decreases postprandial insulin sensitivity through reducing hepatic GSH levels, an effect that is mimicked by increasing cAMP hepatic levels and requires physiological NO levels. These observations support the hypothesis that glucagon acts via adenylate cyclase to decrease hepatic GSH levels and induce insulin resistance. We suggest that the glucagon-cAMP-GSH axis is a potential therapeutic target to address insulin resistance in pathological conditions.


Asunto(s)
Glucagón/metabolismo , Glutatión/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Hígado/metabolismo , Adenilil Ciclasas/metabolismo , Animales , Glucemia/metabolismo , Bucladesina/metabolismo , Bucladesina/farmacología , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Glucagón/farmacología , Técnica de Clampeo de la Glucosa , Inyecciones Intravenosas , Insulina/farmacología , Hígado/efectos de los fármacos , Masculino , Óxido Nítrico/metabolismo , Vena Porta , Periodo Posprandial , Ratas , Ratas Sprague-Dawley , omega-N-Metilarginina/farmacología
19.
Infect Immun ; 82(3): 1287-95, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24379293

RESUMEN

Nitric oxide (NO) is a proposed component of malaria pathogenesis, and the inducible nitric oxide synthase gene (NOS2) has been associated to malaria susceptibility. We analyzed the role of NOS2 polymorphisms on NO bioavailability and on susceptibility to infection, Plasmodium carrier status and clinical malaria. Two distinct West African sample collections were studied: a population-based collection of 1,168 apparently healthy individuals from the Príncipe Island and a hospital-based cohort of 269 Angolan children. We found that two NOS2 promoter single-nucleotide polymorphism (SNP) alleles associated to low NO plasma levels in noninfected individuals were also associated to reduced risk of pre-erythrocytic infection as measured anti-CSP antibody levels (6.25E-04 < P < 7.57E-04). In contrast, three SNP alleles within the NOS2 cistronic region conferring increased NO plasma levels in asymptomatic carriers were strongly associated to risk of parasite carriage (8.00E-05 < P < 7.90E-04). Notwithstanding, three SNP alleles in this region protected from cerebral malaria (7.90E-4 < P < 4.33E-02). Cohesively, the results revealed a dual regimen in the genetic control of NO bioavailability afforded by NOS2 depending on the infection status. NOS2 promoter variants operate in noninfected individuals to decrease both NO bioavailability and susceptibility to pre-erythrocytic infection. Conversely, NOS2 cistronic variants (namely, rs6505469) operate in infected individuals to increase NO bioavailability and confer increased susceptibility to unapparent infection but protect from cerebral malaria. These findings corroborate the hypothesis that NO anti-inflammatory properties impact on different steps of malaria pathogenesis, explicitly by favoring infection susceptibility and deterring severe malaria syndromes.


Asunto(s)
Malaria Cerebral/genética , Malaria/genética , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico/sangre , Alelos , Biomarcadores/sangre , Humanos , Malaria/sangre , Malaria Cerebral/sangre , Plasmodium , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-23838145

RESUMEN

The stimulation of hepatic glycogenesis is a ubiquitous response to a glucose challenge and quantifying its contribution to glucose uptake informs its role in restoring euglycemia. Glycogenesis can be quantified with labeled water provided that exchange of glucose-6-phosphate hydrogen 2 (G6P-H2) and body water via glucose-6-phosphate isomerase, and exchange of positions 4, 5 and 6 hydrogens (G6P-H456) via transaldolase, are known. These exchanges were quantified in 24-h fasted rats (Rattus norvegicus; n=6) and 21-day fasted seabass (Dicentrarchus labrax; n=8) by administration of a glucose load (2000mg·kg(-1)) enriched with [U-(2)H7]glucose and by quantifying hepatic glycogen (2)H-enrichments after 2h (rats) and 48h (seabass). Direct pathway contributions of the glucose load to glycogenesis were also estimated. G6P-H2 and body water exchange was 61±1% for rat and 47±3% for seabass. Transaldolase-mediated exchange of G6P-H456 was 5±1% for rat and 10±1% for seabass. Conversion of the glucose load to hepatic glycogen was significant in seabass (249±54mg·kg(-1)) but negligible in rats (12±1mg·kg(-1)). Preload plasma glucose levels were similar for seabass and rats (3.3±0.7 and 4.4±0.1mmol·L(-1), respectively) but post-load plasma glucose was significantly higher in seabass compared to rats (14.6±1.8 versus 5.8±0.3mmol·L(-1), p<0.01). In conclusion, G6P-H2 and body water exchange is incomplete for both species and has to be accounted for in estimating hepatic glycogen synthesis and direct pathway activities with labeled water tracers. Transaldolase-mediated exchange is insignificant. Hepatic direct pathway glycogenesis plays a prominent role in seabass glucose load disposal, but a negligible role in the rat.


Asunto(s)
Lubina/metabolismo , Glucosa/metabolismo , Glucógeno/biosíntesis , Hígado/metabolismo , Animales , Glucemia , Privación de Alimentos , Gluconeogénesis , Masculino , Ratas , Ratas Wistar , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...